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Abstract—Link prediction is a fundamental task in statistical
analysis of network data. Though much research has concen-
trated on predicting entity-entity relationships in homogeneous
networks, it has attracted increasing attentions to predict relation-
ships in heterogeneous networks, which consist of multiple types
of nodes and relational links. Existing work on heterogeneous
network link prediction mainly focuses on using input features
that are explicitly extracted by humans. This paper presents an
approach to automatically learn latent features from partially
observed heterogeneous networks, with a particular focus on
entity-attribute networks (EANs), and making predictions for
unseen pairs. To make the latent features discriminative, we adopt
the max-margin idea under the framework of maximum entropy
discrimination (MED). Our maximum entropy discrimination
joint relational model (MED-JRM) can jointly predict entity-
entity relationships as well as the missing attributes of entities in
EANs. Experimental results on several real networks demonstrate
that our model has improved performance over state-of-the-
art homogeneous and heterogeneous network link prediction
algorithms.

I. INTRODUCTION

As the availability and scope of network data increase,
link prediction [20] as a fundamental task of statistical net-
work analysis has attracted many research attentions. Link
prediction methods can find applications in recommendation
systems [13], information retrieval [1], marketing [25], bioin-
formatics [30], and so on.

Link prediction is typically formulated as a task of pre-
dicting unseen links between entities given partially observed
link information [17]. Many methods have been developed,
including random walk methods [2], [28], [16], probabilistic
models [29], and the methods that formalize the prediction
task as a classification problem [10], [19]. All these methods
rely on human designed features. Though the explicit feature
based methods can work effectively, they may suffer from
some problems [2]. First, deciding which features to use and
extracting good features can be notorious and may require
extensive expert knowledge. Second, some explicit features
are domain-specific and not generalizable, e.g., some social
science knowledge for predicting links in social networks may
not be suitable for document networks (e.g., paper citation
networks). Finally, it is difficult for humans to design or
perceive features accounting for the high-order interactions
hiding in the complex networks. To deal with such issues and
better capture the properties of networks, latent space models
have been widely studied to automatically learn good features.
Representative work includes latent feature relational models
(LFRMs) [12], [11] and low-rank matrix factorization [23].
Recently, improvements on LFRMs have been obtained in

various aspects. For example, to avoid the time consuming step
of model selection, Miller et al. [24] introduced nonparametric
LFRMs methods to automatically infer the latent feature
dimension; Zhu [34] further integrated max-margin learning
ideas into LFRMs to learn discriminative latent features.

However, one limitation of the above methods is that
they do not use entities’ attributes or only use attributes as
extra input information. Thus, these methods do not take the
interaction between entities and attributes into consideration;
and they cannot infer the entities’ attributes, an important
task in many practical applications. For example, many people
have rich attribute information (e.g., gender, age, interests
and employers) in online social networks (e.g., Google+ or
Facebook), and it is useful to incorporate such information
to make entity-entity link prediction. Meanwhile, when we
use attribute information, one important issue to be addressed
is missing values, which are common due to two reasons:
(1) users usually set some of their private attributes publicly
invisible; and (2) users may not fill out all the information
in their profiles. Inferring missing attributes based on network
structure [33] is an attractive topic since with more information
about users, we can customize searching results, improve
recommendation systems, or make personalized software.

Therefore, it is essential and challenging to develop statis-
tical models that seamlessly integrate attributes with entities’
link structures and allow link prediction and attribute inference
mutually influencing each other. Supervised random walk [2]
provides some attempts in combining attribute information
and network structure. However, it only leverages attributes of
neighborhood nodes to learn edge weight and cannot be used to
infer attributes. We need some models to get more insights of
the mutual influence, so that we could jointly predict entities’
links and infer their attributes. Heterogeneous networks, which
could better portrait the real world in that they contain multiple
kinds of nodes and links, give us an elegant way to do this [32],
[8]. Some recent work of link prediction has been extended to
more complicated heterogeneous networks [32], [8], [26], [31],
[6]. However, those methods mainly focus on using explicitly
designed features such as network topology, node activity, time
stamps, etc.; and to the best of our knowledge, latent feature
approaches have not been well studied.

We present a novel max-margin latent feature model for
heterogeneous networks to avoid the potential limitations of
the methods with explicitly designed features and to analyze
the mutual influence between entities and attributes. We make
the following contributions:

• We formalize Entity-Attribute Networks (EANs) as a
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generic class of heterogeneous networks. EANs can
be social networks [32], [8], document networks and
protein interaction networks, as long as they can be
abstracted to entities, attributes and their relationships;

• We propose maximum entropy discrimination joint
relational model (MED-JRM) with variational approx-
imation methods. MED-JRM incorporates the max-
margin principle to learn discriminative latent features
and jointly predict entity-entity (E-E) relationships and
entity-attribute (E-A) relationships on EAN networks;

• Finally, Experiments on three real world EAN net-
works are done to demonstrate the advantages of
joint MED-JRM model on link predictions. We fur-
ther extensively analyze the sensitivity to some key
parameters.

The rest paper is structured as follows. Section II re-
views some related work. Section III formalizes EAN as a
generic class of heterogeneous networks. Section IV presents
the MED-JRM model with inference algorithms. Section V
presents experimental results. Finally, Section VI concludes.

II. RELATED WORK

Our work is closely related to heterogeneous network link
prediction and latent feature relational models.

A. Heterogeneous network link prediction

There have been a few studies on link prediction in
heterogeneous networks. Yin et al. [32] proposed a unified
framework, which augments the commonly used social net-
work graph with attribute nodes, and they focused on exploring
random walk methods with restart to improve the performance.
This framework was further used by Gong et al. [8], who
extended several competitive algorithms. They showed that the
framework with attribute nodes is superior to those without at-
tribute nodes. They also found that inferring missing attributes
could further improve the accuracy, which demonstrates the
importance of attribute nodes.

Link prediction in more complicated heterogeneous net-
works was also studied [26], [31], [6], [18]. For example,
Sun et al. [26] formally defined the heterogeneous information
network and quantified meta path [27] based topology features.
Yang et al. [31] proposed MRIP model and they also explored
temporal model of link formation. MRIP is based on topol-
ogy and the temporal model employed features like recency,
node activeness, degree preferential, etc. But as can be seen,
though these link prediction algorithms can analyze complex
networks, they mainly focus on using human designed features,
which could have some limitations as discussed above and
motivate the developments of latent feature relational models.

B. Latent feature relational models

Latent feature relational models are effective approaches to
capture latent properties of a network. Suppose the number of
entities is N , we can construct a binary N×N matrix Y , with
Yij = 1 if there are observed positive links between entities
i, j and Yij = −1, otherwise. The goal of link prediction is
to learn a model that could predict whether unobserved links
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Fig. 1. An illustration of an EAN Network

are positive or negative. In the learning and predicting process,
whether the link between entities i and j exists may be affected
by some extra information, which is denoted by Xij .

Suppose each entity i is associated with a K-dimension
real valued feature vector ui ∈ RK . Then the likelihood of
two entities having positive links can be formulated as

p(Yij = 1|Xij , ui, uj) = Φ(ψ(ui, uj) + β>Xij + b)

where b is an offset parameter and Φ(x) = 1
1+e−x is the

logistic function. For function ψ(ui, uj), Hoff et al. [12]
proposed latent distance model ψ(ui, uj) = −d(ui, uj), where
d(·) is a distance function, and [11] generalized it for modeling
symmetric relational data ψ(ui, uj) = u>i Duj , where D is a
diagonal matrix. Other latent feature relational models include
nonparametric model [9], [34], relational topic model [4] and
its generalization [5]. While these models are powerful, they
are constrained to homogeneous networks. We will build a
model for one kind of heterogeneous networks, as explained
below.

III. ENTITY-ATTRIBUTE NETWORK

To make our joint latent feature models generally appli-
cable, we first formalize a generic class of heterogeneous
networks as Entity-Attribute Networks, which include social
networks [32] and many others, as long as they could be
abstracted to entities, attributes and relationships among them.
Formally, we define:

Definition 1: An Entity-Attribute Network (EAN) is a
heterogeneous network that can be characterized by a graph
G = 〈V, E〉, where V = VN ∪VM is the union of entity nodes
VN and attribute nodes VM ; E = EN ∪EM is the union of E-E
links EN and E-A links EM .

Fig. 1 shows an illustration of an EAN network. For
concrete examples, in social networks, entity nodes set VN
represents people, attribute nodes set VM represents people’s
profiles such as gender, working company and interests, E-E
links set EN represents friendship links among people and E-A
links set EM represents if a person in VN has one profile in VM .
Similarly, in document networks, VN represents documents,
VM represents words, EN represents citation links among
documents and EM represents if a document has the word.

Definition 2: Given a snapshot of EAN (G = 〈VN ∪
VM , EN ∪ EM 〉), joint link prediction is to jointly analyze
interactions of entities and attributes, then predict whether
there is or will be a link eij ∈ EN between nodes ui, uj or a
link eij ∈ EM between nodes ui, vj , where ui, uj ∈ VN and
vj ∈ VM.
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IV. THE MED-JRM MODELS

We formally present maximum entropy discrimination joint
relational models (MED-JRM) to characterize the influence
between entity-entity (E-E) relations and entity-attribute (E-
A) relations in EAN networks.

A. MED

We first briefly review the maximum entropy discrimina-
tion (MED) framework [14], [15], in the context of binary
classification, where binary labels yd ∈ {−1, 1} are assigned
to examples xd. Given a discriminant function f(x; η) param-
eterized by η and a prior p0(η), MED tries to find an optimal
posterior distribution q(η), rather than a single optimal value
η in standard SVM, by solving the entropic regularized risk
minimization problem

min
q(η)∈P

KL(q(η)||p0(η)) + CR(q(η)),

where KL(q||p0) is the K-L divergence, C is a positive regular-
ization constant, R(q(η)) =

∑
d max(0, `−ydEq(η)[f(xd; η)])

(` is a positive parameter that measures the cost of making
wrong predictions) is the generalized hinge loss that captures
the large-margin principle underlying the MED prediction rule
ŷ = sign Eq(η)[f(x; η)], and P denotes the probability simplex
with an appropriate dimension.

MED subsumes SVM and provides an elegant way to in-
tegrate the discriminative max-margin learning with Bayesian
generative models. Recently, many extensions have been done,
including those on incorporating latent variables [15], [35],
[36]; those on performing structure output prediction [39]; as
well as those on integrating Bayesian nonparametrics and max-
margin learning [38], [34], two important subfields that have
been largely treated as isolated.

B. MED-JRM for Joint Link Prediction

Suppose we have N entity nodes and M attribute nodes
in EAN. As a latent space model, MED-JRM assumes that
each entity is associated with a KN dimension latent feature
vector ui ∈ {0, 1}KN and each attribute is associated with
a KM dimension latent feature vector vj ∈ {0, 1}KM . The
latent feature matrices of entities and attributes are denoted by
U = [u>1 ;u>2 ; ...;u>N ] and V = [v>1 ; v>2 ; ...; v>M ], respectively,
where Uik = 1 means entity i has feature k; likewise for
Vjk. We further denote Y N and YM as observed matrices,
with yNij = 1 when there is a link from entity i to entity j,
yNij = −1 otherwise; and yMij = 1 when there is a link from
entity i to attribute j, yMij = −1 otherwise.

Given latent features ui and uj , MED-JRM defines the
discriminant function for the link between entities i and j as

f(ui, uj ;W
N ) = u>i W

Nuj = Tr(WNuju
>
i ), (1)

where WN is a weight matrix associated with E-E pairs (i.e.,
WN
kk′ is the weight that affects a link from entity i to entity

j if i has the feature k and j has the feature k′) and Tr(·) is
the trace of a matrix. Similarly, the discriminant function for
the link between entity i and attribute j is

f(ui, vj ;W
M ) = u>i W

Mvj = Tr(WMvju
>
i ), (2)

where WM is another weight matrix which is associated
with E-A pairs. As illustrated in Fig. 2, Eq. (1) models the
interaction among entities, while Eq. (2) models the interaction
between entities and attributes. To perform Bayesian inference,
we treat WN , WM as random variables, and to get rid of the
uncertainties, the effective discriminant functions are further
defined as

fN (i, j) = Eq(U,WN )[f(ui, uj ;W
N )]

fM (i, j) = Eq(U,V,WM )[f(ui, vj ;W
M )],

which give us the link prediction rules

ŷNij = sign fN (i, j), and ŷMij = sign fM (i, j).

If the predicted label ŷij = 1, there exists link between the
two nodes; otherwise, there is no link between the two nodes
according to the model.

Latent space ofLatent space of 
Entities

Latent space of 
AttributesAttributes

Fig. 2. E-E interaction and E-A interaction in two latent spaces

Let IN be the set of E-E training pairs and IM be the set
of E-A training pairs, and let Θ = {U, V,WN ,WM} denote
all the latent variables. We define MED-JRM as solving the
optimization problem

min
q(Θ)∈P

L(q(Θ)) + C1R1(q(Θ)) + C2R2(q(Θ)), (3)

where L(q(Θ)) = KL(q(Θ)‖p0(Θ)), R1(q(Θ)) =∑
(i,j)∈IN max(0, `1 − yNij f

N (i, j)) and R2(q(Θ)) =∑
(i,j)∈IM max(0, `2− yMij fM (i, j)) are hinge losses; C1 and

C2 are positive regularization constants balancing the relative
importance of various terms.

An important issue of problem (3) is to choose appropriate
prior p0. For simplicity, we assume that U , V , WN and WM

are mutually independent a priori and choose the factorized
prior p0(Θ) = p0(U)p0(V )p0(WN )p0(WM ). For priors
p0(WN ) and p0(WM ), we use standard normal distribution,
i.e. WN

ij ∼ N (0, I), and WM
ij ∼ N (0, I). For priors p0(U)

and p0(V ), we use the Beta-Bernoulli process [22] for
finite feature matrices1. Specifically, we introduce auxiliary
variables π = {πN , πM}, and the priors p0(U) and p0(V )
could be generated as follows

πN
k |αN ,KN ∼ Beta(

αN

KN
, 1) Uik|πN

k ∼ Bernoulli(πN
k )

πM
k |αM ,KM ∼ Beta(

αM

KM
, 1) Vik|πM

k ∼ Bernoulli(πM
k ).

1Though an infinite MED-JRM model can be formulated by using Indian
buffet process [9], this paper considers the finite MED-JRM model for
simplicity.
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Then the augmented learning problem is to solve

min
q(π,Θ)∈P

KL(q(π,Θ)||p0(π,Θ)) + C1R1(q(Θ))

+ C2R2(q(Θ))
(4)

where p0(π,Θ) = p0(πN )p(U |πN )p0(πM )p(V |πM )

p0(WN )p0(WM ).

C. Approximate Mean-Field Inference Algorithms

Though problem (4) is convex and we can derive the
optimal solution using convex analysis tools, it is general-
ly intractable to make inference with the optimal solution.
Therefore, we resort to approximation inference by making
additional mean-field assumptions. Specifically, we impose the
following additional mean-field constraint to problem (4):

q(π,Θ) = q(WN )q(WM )
( KN∏
k=1

q(πN
k |γN

k )

N∏
i=1

q(Uik|σN
ik)
)
×
(KM∏
k=1

q(πM
k |γM

k )

M∏
i=1

q(Vik|σM
ik )
)
,

where q(πNk |γNk ) = Beta(γNk1 , γNk2), q(πMk |γMk ) =
Beta(γMk1 , γ

M
k2

), q(Uik|σNik) = Bernoulli(σNik) and
q(Vik|σMik ) = Bernoulli(σMik ). Then problem (4) can be
solved to find a local optimum by executing the four steps
below iteratively (to save space we only provide the outline).

Step I: Solve for q(WN ). By fixing other model parameters
and latent features, we can show that the posterior is also
a normal distribution q(WN ) = N (ΛN , I), and ΛN can be
solved by optimizing the subproblem:

min
ΛN ,ξ

1

2
||ΛN ||22 + C1

∑
(i,j)∈IN

ξij

∀(i, j) ∈ IN , s.t. : yNij (Tr(ΛNE[uju
>
i ])) ≥ `1 − ξij .

where ξ = {ξij : (i, j) ∈ IN} are slack variables. This
problem is the same as a standard SVM, thus it could be
solved with existing efficient SVM tools such as LIBSVM or
SVMLight. We use SVMLight in experiments.

Step II: Solve for q(WM ). Similar as in Step I, q(WM ) =
N (ΛM , I), we can get the optimization problem for ΛM by
solving:

min
ΛM ,ξ

1

2
||ΛM ||22 + C2

∑
(i,j)∈IM

ξij

∀(i, j) ∈ IM , s.t. : yMij (Tr(ΛME[vju
>
i ])) ≥ `2 − ξij ,

This again can be efficiently solved by SVMLight.

Step III: Solve for q(πN , U). By fixing others, this step
involves solving the subproblem:

min
q(πN ,U)

KL(q(πN , U)||p0(πN , U)) + C1R1(q(Θ))

+ C2R2(q(Θ)).

For q(πN ), by setting the gradients at zero, we can derive the
update equations:{

γNk1 = αN

KN
+
∑N
i=1 σ

N
ik

γNk2 = N + 1−
∑N
i=1 σ

N
ik .

(5)

For q(U), we can still derive a closed-form update equation
by using sub-gradient methods. Namely, by setting the sub-
gradients at zero, we have:

σNik = Φ
(
E[lnπNk ]−E[ln(1−πNk )]−C1

∂R1

∂σNik
−C2

∂R2

∂σNik

)
, (6)

where Φ(·) is the logistic function.

Step IV: Solve for q(πM , V ). Similar as in Step III, we get:{
γMk1 = αM

KM
+
∑M
i=1 σ

M
ik

γMk2 = M + 1−
∑M
i=1 σ

M
ik ,

(7)

σMjk = Φ
(
E[lnπMk ]− E[ln(1− πMk )]− C2

∂R2

∂σMjk

)
. (8)

With these update equations above, we summarize the
procedure in Algorithm 1. For the convergence condition, we
can monitor the value q of Problem (4) or set a maximum
iteration number im. Convergence is met if q changes little
from the previous iteration or the number of iterations is
greater than im.

Algorithm 1 for Learning MED-JRM
1: initialize γNk1 = αN

KN
, γNk2 = 1 and γMk1 = αM

KM
, γMk2 = 1

2: initialize σNik and σMjk randomly

3: initialize ΛNkk′ and ΛMkk′ randomly
4: repeat
5: repeat
6: for each k in [0,KN ) do
7: update γNk1 , γ

N
k2

using Eq. (5)
8: for each k in [0,KM ) do
9: update γMk1 , γ

M
k2

using Eq. (7)
10: for each i in [0, N) do
11: for each k in [0,KN ) do
12: update σNik using Eq. (6)
13: for each j in [0,M) do
14: for each k in [0,KM ) do
15: update σMjk using Eq. (8)

16: until convergence
17: update ΛNkk′ , ΛMkk′ using SVMLight, respectively
18: until convergence

D. Prediction

As in many existing network analysis models, we restrict
ourselves to the case of warm-start prediction, that is, all the
entities and attributes are observed at least once in the training
phase. Extension to the more subtle cold-start prediction [3]
is interesting and comprise our future work. Under the warm-
start condition, MED-JRM can learn a latent feature for every
attribute and every entity, as well as the weight matrices
WN and WM . Specifically, through the training algorithm,
we can get the variational parameters σNik , σ

M
jk and model

parameters ΛNkk′ ,Λ
M
kk′ . Then, the expectations are E[WN

kk′ ] =
ΛNkk′ , E[Uik] = σNik , E[WM

kk′ ] = ΛMkk′ , and E[Vjk] = σMjk .
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Thus, for E-E link prediction, the effective discriminant
function is:

fN (i, j) = Tr(E[WN ]E[uju
>
i ])

=

{
(σNi )>ΛNσNj i 6= j
(σNi )>ΛNσNj +

∑
k ΛNkkσ

N
ik(1− σNik) i = j

and for E-A link prediction, the effective discriminant function
is:

fM (i, j) = Tr(E[WM ]E[vju
>
i ]) = (σNi )>ΛMσMj .

V. EXPERIMENTS

A. Datasets and Experiment Setup

We apply the proposed model on three real world network
datasets – Google+ social networks, Cora document networks
and CiteSeer document networks. The datasets we use are
randomly subsampled from corresponding original ones [8],
[21], [7]. Google+ dataset: Our Google+ dataset is a subset of
a snapshot of Google+ in September, 2011. It consists of 203
entities, 124 attributes, 468 E-E links and 443 E-A links. Cora
dataset: As an internet portal, Cora places computer science
research papers into a topic hierarchy and maps the citation
between papers. The E-E links can be formed by papers’
citation and entities’ attributes are represented by words in
papers’ abstracts, forming E-A links. In total, we have 209
entities, 582 attributes, 700 E-E links and 3717 E-A links.
Citeseer dataset: CiteSeer is an automatic citation indexing
system and it indexes academic literature including its abstract
and citations. In total, we have 102 entities, 587 attributes, 234
E-E links and 2617 E-A links.

Baselines: To better illustrate the advantages of MED-
JRM, we compare with two types of baselines – one type
works on homogeneous networks and the other works under
the heterogenous EAN networks.

Type 1: Homogeneous network baselines. We use a state-
of-the-art model MED-NRM [34] 2(maximum entropy dis-
crimination nonparametric relational model), which is a kind of
nonparametric latent feature relational models and has shown
excellent performance in link prediction tasks. But it doesn’t
take E-A interaction into consideration and could only be used
to predict E-E relationships.

Type 2: EAN baselines. As [8] claims they tested several
leading algorithms under similar framework, we choose some
of the well-performed algorithms from it and apply them to
EAN. Specifically, we use: Common Neighbors (CN-EAN),
Adamic/Adar (AA-EAN), Low Rank Approximation (LRA-
EAN) and Random Walk with Restart (RWR-EAN). The suffix
“EAN” is used to indicate that the algorithms are applied to
EAN networks. Please see [8] for more details.

Experiment setup: we randomly take 80% of each dataset
for training and the remaining 20% for testing, under the
constraint that every entity and attribute appear at least once
in the training set. Since all the three network datasets are
extremely sparse (i.e., the number of negative links is much
larger than positive ones), we randomly sample 2% negative

2Datasets in this paper are not used since they don’t contain attribute
information

TABLE I. AUC OF E-E AND E-A LINK PREDICTION ON THE GOOGLE+
DATASET

Methods E-E AUC E-A AUC

MED-NRM 0.771± 0.020 —
CN-EAN 0.724 0.697

AA-EAN 0.734 0.700

LRA-EAN 0.590 0.612

RWR-EAN 0.807 0.829

MED-JRM 0.850± 0.006 0.841± 0.003

TABLE II. AUC OF E-E AND E-A LINK PREDICTION ON THE CORA
DATASET

Methods E-E AUC E-A AUC

MED-NRM 0.797± 0.017 —
CN-EAN 0.708 0.605

AA-EAN 0.734 0.604

LRA-EAN 0.802 0.703

RWR-EAN 0.823 0.742

MED-JRM 0.845± 0.005 0.821± 0.019

links3 for training in the experiments. Except LRA-EAN and
RWR-EAN, which are implemented in Matlab, all the algo-
rithms are programmed in C++. MED-NRM and MED-JRM
are run in Ubuntu 12.04 with 2.4 GHz Intel Xeon CPU and
24 GB main memory, and the other algorithms are executed
in Windows 8 with 2.5 GHz Intel Core P8700 and 4GB main
memory. We use AUC (i.e., Area Under the ROC curve) value
as performance measurement, same as in [8], [34].

Note that in the training phase, we jointly analyze E-E
interaction and E-A interaction for learning good latent feature
representations by MED-JRM. In the testing phase, though
we are able to perform both E-E link prediction and E-A
link prediction simultaneously, we found that the practical
performance could be improved if we focus on predicting one
type of links at one time. Similar observations apply to other
EAN baselines. Therefore, we adopt this testing strategy for all
the EAN models for fair comparison. This simplified testing
strategy can be further improved by an iterative model learning
method, as discussed later.

B. Quantitative Results

We first report link prediction performance for both E-E
and E-A relationship in terms of AUC values. For models with
random initialization (i.e., MED-NRM and MED-JRM), we
show the mean and standard deviation of AUC scores with
five random restarts.

Tables I, II, III show the results on the three datasets,
respectively. As can be seen, MED-NRM as an excellent
homogeneous network model has better performance than
some of the algorithms under EAN framework on Google+ and
Cora, though it doesn’t use attribute information. However, it
is outperformed by Random walk with Restart, another EAN
method that considers both entity and attribute information.
Overall, our MED-JRM has the best performance for both E-
E and E-A link prediction on all datasets, which demonstrates
that max-margin supervised MED-JRM is not only good at
capturing interactions of E-E and E-A, but also superior in
prediction.

3Other subsample ratios can be used without significantly affecting the
performance by using appropriate regularization parameters.
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(b) Case II
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(c) Case III

Fig. 3. E-E link prediction performance w.r.t. latent feature dimensions KN and KM on the Google+ dataset. Fig. 3a is heat map and the color represents
AUC value. To better illustrate the map, we provide Fig. 3b and Fig. 3c. In Fig. 3b we keep KM fixed and change KN , while in Fig. 3c we keep KN fixed
and change KM .

TABLE III. AUC OF E-E AND E-A LINK PREDICTION ON THE
CITESEER DATASET

Methods E-E AUC E-A AUC

MED-NRM 0.543± 0.025 —
CN-EAN 0.790 0.656

AA-EAN 0.806 0.656

LRA-EAN 0.802 0.738

RWR-EAN 0.798 0.716

MED-JRM 0.894± 0.016 0.768± 0.023

On the CiteSeer dataset (Table III), MED-NRM preforms
surprisingly bad. It is a good example to show that sometimes,
only homogeneous network structure may not be sufficient to
make good prediction on links; thus extra information (e.g.,
attributes) is needed to obtain good performance. By adding
attribute nodes, even a simple method like “CN-EAN” can do
better than the powerful MED-NRM. This demonstrates the
advantages of EAN methods on incorporating E-A informa-
tion.

We also note that on the Google+ dataset (Table I), the
result of MED-JRM in E-A link prediction is only a little
better than the best baseline. The reason might be that the
Google+ dataset was crawled when the company just set up
Google+ services, so there are too many missing attributes and
the network is not very stable, which brings some difficulties
in attribute prediction for our model. While in the more stable
Cora network, MED-JRM obtains significant improvements in
attribute prediction over baselines.

C. Sensitivity Analysis

We present sensitivity analysis to some key parameters in
MED-JRM.

1) Sensitivity to Latent Feature Dimensions: Latent feature
dimension is a very important factor for our model and we
analyze its effect in this section.

Google+: Fig. 3 and Fig. 4 show how the performance
varies along with the change of latent feature dimensions KN

and KM on the Google+ dataset, where Fig. 3a and Fig. 4a are
heat maps and the color represents AUC values. In Fig. 3,
we can see that the results of E-E link prediction are mainly
influenced by KN , while KM plays a less important role. In

addition, with the increase of KN , AUC tends to increase;
when KN = 50, AUC becomes stable at around 0.85. While
in E-A link prediction (see Fig. 4), the influence of KM is
much more important than that of KN ; and with the increase
of KM , AUC tends to decrease. The reason might be that the
number of attributes and entity-attribute links in Google+ is
small, so the model may face overfitting problem for a large
KM . When KM = 5, AUC becomes stable at around 0.83 or
0.84.

The observations of the performance on Google+ are
reasonable – the prediction task is more sensitive to its cor-
responding latent feature dimension, that is, when predicting
E-E relationship, the latent feature dimension of entities KN

dominates the performance; when predicting E-A relationship,
the latent feature dimension of attribute KM is more important.
Therefore, if we want to perform the two tasks simultaneously,
we can set KM relatively small and KN relatively large.

Cora: Fig. 5a shows how latent feature dimensions affect
the AUC of E-E link prediction on the Cora dataset. It seems
there are no patterns at first glance. However, note that the
legend ranges approximately from 0.841 to 0.857 – the interval
is less than 0.02, meaning that MED-JRM performs steadily
well with respect to latent feature dimensions. Fig. 5b is the
heat map for E-A link prediction. From this figure we can see
that similar as E-A link prediction on Google+, KN doesn’t
have much influence on the performance, while KM does.
Generally, MED-JRM works well if KM ≤ 30 and AUC
decreases fast as KM becomes larger if KN is small. In
conclusion, we don’t need to care much about KN and should
keep KM not too large if we want to do both E-E and E-A
link prediction simultaneously.

2) Sensitivity to Other Parameters: To save space we only
analyze how the performance is influenced by parameters
C = {C1, C2} on Cora. These parameters are used to balance
the relative importance of KL divergence and hinge losses.
Fig. 6 describes AUC sensitivity w.r.t C. In general, the trends
in Fig. 6a and Fig. 6b are similar. When we keep one parameter
small and tune another, the performance is good. When C1 and
C2 are both large, we get low AUC values. This suggests that
we shouldn’t give too much weights for hinge loss. It is worth
to note that the sensitivity of E-A link prediction over C is
more apparent than that of E-E link prediction over C. Thus
in our experiments, the range of C we choose in Fig. 6b is
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Fig. 4. E-A link prediction performance w.r.t latent feature dimensions KN and KM on the Google+ dataset. Similar as Fig. 3, the color in Fig. 4a represents
AUC value. In Fig. 4b, we keep KM fixed and change KN ; in Fig. 4c, we keep KN fixed and change KM .

(a) entity-entity (b) entity-attribute

Fig. 5. Performance w.r.t dimensions KN and KM on the Cora dataset.

(a) entity-entity (b) entity-attribute

Fig. 6. Performance w.r.t parameters C1 and C2 on the Cora dataset.

relatively smaller than that in Fig. 6a.

D. More Results

As we have stated, the experiments in the paper adopt
a practically well-performed testing strategy that separately
makes the E-E link prediction and E-A link prediction. In order
to obtain the mutual enhancements between the two prediction
tasks, an iterative testing strategy can be developed (inspired
by semi-supervised methodology and [8]). Specifically, for E-
E link prediction, we iteratively perform two steps: 1) learning
MED-JRM on the current training set; 2) predicting entities’
attributes and adding some entity-attribute link data to the
training set. The procedure is illustrated in Algorithm 2 below,
where the step 7 is performed by first sorting the prediction
scores sij decreasingly with respect to index j; and then adding
the first ia examples of si as positive examples and the last
ia examples of si as negative examples. A similar iterative
procedure can be developed for enhancing the task of entity-
attribute link prediction. Note that in Algorithm 2, in is defined

TABLE IV. E-E LINK PREDICTION AUC WITH ITERATIVE MODEL
LEARNING ON THE GOOGLE+ DATASET

in

ia 1 2 3

0 0.817± 0.005 0.817± 0.005 0.817± 0.005
1 0.823± 0.006 0.830± 0.014 0.826± 0.016
2 0.830± 0.015 0.825± 0.014 0.836± 0.024
3 0.827± 0.008 0.818± 0.012 0.824± 0.005
4 0.828± 0.005 0.838± 0.017 0.824± 0.008

TABLE V. E-E LINK PREDICTION AUC WITH ITERATIVE MODEL
LEARNING ON THE CORA DATASET

in

ia 1 2 3

0 0.852± 0.007 0.852± 0.007 0.852± 0.007
1 0.854± 0.008 0.848± 0.008 0.853± 0.008
2 0.856± 0.006 0.853± 0.006 0.860± 0.005
3 0.861± 0.008 0.849± 0.005 0.852± 0.006
4 0.853± 0.003 0.851± 0.008 0.852± 0.010

as the maximum iteration number and ia is the number of
positive examples and negative examples added to the training
set at every iteration. Furthermore, when we update the training
set, if an example is already in the training set, it won’t be
added again to avoid duplicates.

Algorithm 2 Iterative Model Learning
1: initialize n = 0
2: learn MED-JRM with Algorithm 1
3: while n < in do
4: for each i in [0, N) do
5: for each j in [0,M) do
6: predict link score sij
7: Update the training set with ia positive

examples and ia negative examples.
8: learn MED-JRM
9: n← n+ 1

10: perform final E-E link prediction

Table IV and V show the results on E-E link prediction,
where the row with in = 0 corresponds to the MED-
JRM model without iterative model learning. On the Google+
dataset, we can see that the performance is indeed improved,
however on the Cora dataset, AUC changes little. This is
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consistent with previous observations that there may be many
missing attributes on the Google+ dataset and Cora is a relative
stable dataset. The results also suggest that retrieving missing
attributes could help to learn a better model.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we propose maximum entropy discrimina-
tion joint latent feature relational models (MED-JRM) that
learn discriminative latent features for both link prediction
and attribute inference on entity-attribute networks (EANs), a
generic class of heterogeneous networks that could be used in
different kinds of networks as long as they can be represented
by entities, attributes, and relationships. In order to learn
discriminative latent features, MED-JRM adopts max-margin
learning ideas under the MED framework. Experimental results
on several real networks demonstrate superior performance of
MED-JRM over existing competitors.

We have mainly focused on developing flexible laten-
t feature models to characterize the mutual interactions of
entity-entity and entity-attribute. Though the joint model gets
superior prediction performance, the flexibility comes with
computational cost when KN and KM are large, since the time
complexity of solving multiple latent SVMs is increased by
O(K2) with respect to latent feature dimension K. Inspired by
the very recent work [37], one of our future work is to improve
the efficiency by leveraging the data augmentation ideas to
avoid solving SVM problems. Furthermore, we are interested
in incorporating Bayesian nonparametric techniques [34] to
automatically infer the latent feature dimension.
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